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Why study sorting

(and common)

.l strengths and we algorithms for
sorting

+ Many p L will help you
solve other problems

o highly optimized (we are not
about asymptotic performance guarantces

+ In some (rare) cases, implementing your own sorting algorithm may be
beneficial

Bubble sort

« We start with an ‘educational” sorting algorithm
. to
g o

in practice.

 The idea s simple:
compare st two lements,swap f nt n rder

S e A e
were o swaps in the ast ieration

Bubble sort

demonstration

swapped - Trus

n
i+ 1), seqli]
svapped - True

Bubble sort

+ Worst case: O[n?

5 N suapped = True
O(n?) comparisons, Ofn?) swaps (

n = len(seq)
« Average case: O e swspod
O(n?) comparisons, O(n?) swaps.
« Best case: O
O(n) comparisons, O(1) swaps
+ Space complexity: O(1) seqf
* There ne more concens than perormance g Teve
~ Many swa
- Bubble sort s in-place
« The repetitive algorithm pattern is common

« Not practical - itis not used
in practice

Insertion sort

« Insertion sort is one of the simpler sorting algorithms

« Itis easy to understand, and reasonably fast

.on «dvanced algorithms, lik
merge sort or quicksert (we el study those later)

* The general ideasmple

sy one, and
~ insert the clement to the correct positon:
sents larger than the new one 10 the ight
place the e element n s correct place

Insertion sort
demanstrston 1

for & n range(s, JenGaesd)
cur - seqli]
Ihite sealy - 11 >
L 3 vongott 14>
seqlj] = seql - 1]
1

sealj] = cur

Insertion sort
demonstration 2

for 1 in rango(1, len(seq))
cur = seqli]
Ihite seqly - 11
Laa o oot s
sealj - 11

(L2

seals]

seqly] - cur

Insertion sort

demansiaton 3

for 1 in range(1, len(seq)):
cur - seqli]

j-1
Uhile seqly - 1] > cur\
and J in range(1,i+1)
seali] = seql - 1]
=1

3
sealj] = cur

Insertion sort
demonstation +

for 4 tn rangeCt, entaea))
cur = seqli]
e seaty - 1
a J 1n range(L,ivD):
aeal3) = meqls - 3

seqly] = cur

Insertion sort

demansiaton s

for 1 in range(1, len(seq)):
cur = seqli]

11> cur\
and 3 in Tange(1
seqlf] = seqly - 1]

1

5-1
Unile seqly

L)

sealj] = cur

Insertion sort
demostrationé

for 1 in range(1, len(seq))
cur = seqli]

5-1
While seqly

cur\
and § in range(1,i+1)
seqls]) = seqly - 1]

seq(y] = cur




Insertion sort

for 1 in Tange(1,

cur = seqli

entseq))

g
Inile seqly - 1 > cur\
o 4| 1a Temge

seqlj] = seqly - 1)
1

i)

sealj] = cur

Insertion sort
« Worst case: O(n?)
ofm?) ey o2,
+ Average case: O(n*
) comparisons, O(n) swaps
« Bestcase: O(n)
O(n) comparisons, O(1) swaps
+ Space complexity: O(1]
« In practice, insertion sort is faster
than the bubble sort (and also
selection sort)

) swaps

for 1 in range(1,
cur = seqlk]

ihile seqlj -

and §

i o

sead) = cur

Len(seq))

> cur\
in rango(1,1+1)
-1

Insertion sort

« Insertion sort i simple
« Itis efficient for short sequences

‘merge sort or quicksort (coming next)
. ltis

in-place

« Itis online: it can sort items as they arrive

« Itis stabl: it does not swap elements with equal keys

« Itis adaptive: faster if order of elements is closer to the sorted sequence

Merge sort

Introduction

« Merge sortis a divide-

d-conquer algorithm for sorting

« Itis relatively easy to understand (once you get your head around recursion)
« Ithas good asymptotic performance

+ There are many practical cases where merge sort i used
T e

= splitthe
= F e subeequences
= merge the sorted lsts

Merge sort

demansrston - divide

Merge sort

demonstaton - co

bine

Merging sequences

Complexity of the merge sort

. sequences to be merged
¥ get sequence e 8
SLASBD + Keep two indices on both sequences,
o 1(," Lty starting from the beginning I
4 n(EE) @ « Pick the smallest, place it in the =
1 < len(s1) and s1[1] < s2[j]: larget sequence
stin) = el « The algorithm requires O(n) steps. e 2
else Rl
sli+j] = s2(3]
3
Mer,

the implementation

dot merge_sort(s)
201D + Once we have merge ), the restis trivial
= Split the array into two
ooy st bt s
when the input is length |

ifn <= 15 return
s1, 2 = sCn//2], sla//2:]
merge_sort(s1)
merge_sort(s2)
mergo(st, 2,

Bl

Merge sort: summary

« Straightforward application of di

vide-and-conquer

o logn) complexity

place: requir

s O(n) additional

* Iis patulany waeul o setings with ow randor-cces memosy or

sequential a
« Merge sortis e

« Ttis a well studicd algorithm, there are many variants (in-place,

non-recursive)

A short dive ergence m mmplcx.w A short divergence to complexity
p) p) [ owmd
; a ;
a m P
1K 10240 1048576 Loz y




Quicksort
introduction
+ Quick:

pop:

Quicksort

demonstraton - divide

so[er[ss[12]57[76] 93] 72

Ateach divide step

is that big the p

done before spliting
ts

o2

merge sort on average
+ General dea: pick a pivot p, and divide the sequence into three parts as
L. smaller than a particular clement p
G larger than a particular clement p
E equal toa particular clement p
+ sort Land G recursively
+ combination s simple concatenation

+ Picka pivot
« Recursively call quicksort twice

L for items less than the pivot

G for tems greater than the pivot

+ O(n) operations

Quicksort Quicksort
dot gsort(seq)
it lenGseq < 1): zomuen se
Atcach combine st e qsorex m T mEane <
or x in seq if x == se ¥y
* Simply concatenate L gsorechs for x 1n et it X5 seatlD 4 oh
L P
E items equal o
G the soiedtemsgreter thn p
+ Noneed for O(n] merging + Practical implementations are not very diffrent
e s
= in-plac
7 g the ot mre carctlly
Quicksort Quicksort
anaiyts aveage<asecomplesy and prevnting he wort case
ABCDEF
* Similr o the merge ot qicksort perorms O(n) + Worst case of the quicksort is when the input sequence is sorted.
operations at ach leve In recursio ABCDE « I the input sequence i (approximately) random, the xpected number of
« The verl complsity s propentinal o clements in each divide is n/
where U depth of the & ABCD + o reduce the probabiliy of worst case, rndomized quicksort picks the pivot
+ The recursion tre of merge sort is balanced, so depth / randomly
islogn. ABC the median of th pivot,bu
+ For quicksort we do not have a balanced-tree \ e e e T e
guarantee AB + A common approach is picking three values (typically fist, middle and last)
+ In the worst case, the depth o the tree can be 1, A from the sequence, and selcting the median of three’ as the pivot
resulting in O(n’ ) complexity K

Quicksort

+ Complexity: O(nlog ) average, O[n?) worst
« Despite ts worst-case O(n?) complexity, quicksortis faster than merge sort on
average (in practice)

. pl version is more
common)

« Quicksort is not stable

+ Quicksortis one of the most-studied algorithms: there are many variants, its
properties are well known

pl

Sorting algorithms so far, and the lower bound

Algorithm _ worst_average_best__memory _in-place _stable
e n T ves  yes
non? n 1 yes  yes
nlogn nlogn  nlogn n o yes

nlogn nlogn logn  yes  no
+ Can we dobetter than O{nlogn)?
the answer

turns out to be o’
« Lower bound of worst-case sorting is Q(nlog n)
+ In some special cases, linear-time complexity is possible

Bucket sor

introduction

« Bucket sort puts elements of the input into a pre-defined number of ordered
buckets’

« Elements i each bucket s sorted (typically using insertion sort)

« We can than retrieve the sorted elements by visiting each bucket

s to each other

bucket to place them
« In special cases, this results in O[n) worst-case complexity

Bucket sort

demonstration

+ While placing the elements into the buckets, no
omparisons between the keys

« Inside the buckets worst-case O(n?] (insertion sort)

+ What if we had as many buckets as the keys?

2 Otn)sonimgame

Radix sort

« Ina large number of cases, we want to sort objects with multiple keys
« In such cases, we define the order of key pairs as
(ki 1) < (K2, L2) i Ky < Ky, or kg =Ky and Ly < 1
« This definition can be generalized to key tuples of any length
« This ordering is known as lexicographic or dictionary order
i

for this purpose

Summary
* Sorting s anmportant and welltudisd omputationl poblns
5 inp optimized,
R ‘multiple basic algorithms
« Naive sorting algorithms run in O(n?) time
+ Lower bound on time is Q(nlogn), a

algorithms achieve this
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)
+ And a fun way to see sorting in action:
https://uus. youtube. con/user/AlgoRythaics
Next:
« Trees

+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter )



https://www.youtube.com/user/AlgoRythmics
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