Sorting

Data Structures and Algorithms for Computational Linguistics Il
(ISCL-BA-07)

agn Caltekin
ceoltekindsts. uni-tuebingen. de

Universty of Tabinge.
Sniar s Sprschisenschatt.

Winter Semester 2023/24

Why study sorting

(and common)

.l strengths and we algorithms for
sorting

+ Many p L will help you
solve other problems

o highly optimized (we are not
about asymptotic performance guarantces

+ In some (rare) cases, implementing your own sorting algorithm may be
beneficial

Bubble sort

« We start with an ‘educational” sorting algorithm
. to
g o

in practice.

 The idea s simple:
compare st two lements,swap f nt n rder

S e A e
were o swaps in the ast ieration

Bubble sort

demonstration

swapped - Trus

n
i+ 1), seqli]
svapped - True

Bubble sort

+ Worst case: O[n?

5 N suapped = True
O(n?) comparisons, Ofn?) swaps (

n = len(seq)
« Average case: O e swspod
O(n?) comparisons, O(n?) swaps.
« Best case: O
O(n) comparisons, O(1) swaps
+ Space complexity: O(1) seqf
* There ne more concens than perormance g Teve
~ Many swa
- Bubble sort s in-place
« The repetitive algorithm pattern is common

« Not practical - itis not used
in practice

Insertion sort

« Insertion sort is one of the simpler sorting algorithms

« Itis easy to understand, and reasonably fast

.on «dvanced algorithms, lik
merge sort or quicksert (we el study those later)

* The general ideasmple

sy one, and
~ insert the clement to the correct positon:
sents larger than the new one 10 the ight
place the e element n s correct place

Insertion sort
demanstrston 1

for & n range(s, JenGaesd)
cur - seqli]
Ihite sealy - 11 >
L 3 vongott 14>
seqlj] = seql - 1]
1

sealj] = cur

Insertion sort
demonstration 2

for 1 in rango(1, len(seq))
cur = seqli]
Ihite seqly - 11
Laa o oot s
sealj - 11

(L2

seals]

seqly] - cur

Insertion sort

demansiaton 3

for 1 in range(1, len(seq)):
cur - seqli]

j-1
Uhile seqly - 1] > cur\
and J in range(1,i+1)
seali] = seql - 1]
=1

3
sealj] = cur

Insertion sort
demonstation +

for 4 tn rangeCt, entaea))
cur = seqli]
e seaty - 1
a J 1n range(L,ivD):
aeal3) = meqls - 3

seqly] = cur

Insertion sort

demansiaton s

for 1 in range(1, len(seq)):
cur = seqli]

11> cur\
and 3 in Tange(1
seqlf] = seqly - 1]

1

5-1
Unile seqly

L)

sealj] = cur

Insertion sort
demostrationé

for 1 in range(1, len(seq))
cur = seqli]

5-1
While seqly

cur\
and § in range(1,i+1)
seqls]) = seqly - 1]

seq(y] = cur

Insertion sort

for 1 in Tange(1,

cur = seqli

entseq))

g
Inile seqly - 1 > cur\
o 4| 1a Temge

seqlj] = seqly - 1)
1

i)

sealj] = cur

Insertion sort
« Worst case: O(n?)
ofm?) ey o2,
+ Average case: O(n*
) comparisons, O(n) swaps
« Bestcase: O(n)
O(n) comparisons, O(1) swaps
+ Space complexity: O(1]
« In practice, insertion sort is faster
than the bubble sort (and also
selection sort)

) swaps

for 1 in range(1,
cur = seqlk]

ihile seqlj -

and §

i o

sead) = cur

Len(seq))

> cur\
in rango(1,1+1)
-1

Insertion sort

« Insertion sort i simple
« Itis efficient for short sequences

‘merge sort or quicksort (coming next)
. ltis

in-place

« Itis online: it can sort items as they arrive

« Itis stabl: it does not swap elements with equal keys

« Itis adaptive: faster if order of elements is closer to the sorted sequence

Merge sort

Introduction

« Merge sortis a divide-

d-conquer algorithm for sorting

« Itis relatively easy to understand (once you get your head around recursion)
« Ithas good asymptotic performance

+ There are many practical cases where merge sort i used
T e

= splitthe
= F e subeequences
= merge the sorted lsts

Merge sort

demansrston - divide

Merge sort

demonstaton - co

bine

Merging sequences

Complexity of the merge sort

. sequences to be merged
¥ get sequence e 8
SLASBD + Keep two indices on both sequences,
o 1(," Lty starting from the beginning I
4 n(EE) @ « Pick the smallest, place it in the =
1 < len(s1) and s1[1] < s2[j]: larget sequence
stin) = el « The algorithm requires O(n) steps. e 2
else Rl
sli+j] = s2(3]
3
Mer,

the implementation

dot merge_sort(s)
201D + Once we have merge), the restis trivial
= Split the array into two
ooy st bt s
when the input is length |

ifn <= 15 return
s1, 2 = sCn//2], sla//2:]
merge_sort(s1)
merge_sort(s2)
mergo(st, 2,

Bl

Merge sort: summary

« Straightforward application of di

vide-and-conquer

o logn) complexity

place: requir

s O(n) additional

* Iis patulany waeul o setings with ow randor-cces memosy or

sequential a
« Merge sortis e

« Ttis a well studicd algorithm, there are many variants (in-place,

non-recursive)

A short dive ergence m mmplcx.w A short divergence to complexity
p) p) [owmd
; a ;
a m P
1K 10240 1048576 Loz y

Quicksort
introduction
+ Quick:

pop:

Quicksort

demonstraton - divide

so[er[ss[12]57[76] 93] 72

Ateach divide step

is that big the p

done before spliting
ts

o2

merge sort on average
+ General dea: pick a pivot p, and divide the sequence into three parts as
L. smaller than a particular clement p
G larger than a particular clement p
E equal toa particular clement p
+ sort Land G recursively
+ combination s simple concatenation

+ Picka pivot
« Recursively call quicksort twice

L for items less than the pivot

G for tems greater than the pivot

+ O(n) operations

Quicksort Quicksort
dot gsort(seq)
it lenGseq < 1): zomuen se
Atcach combine st e qsorex m T mEane <
or x in seq if x == se ¥y
* Simply concatenate L gsorechs for x 1n et it X5 seatlD 4 oh
L P
E items equal o
G the soiedtemsgreter thn p
+ Noneed for O(n] merging + Practical implementations are not very diffrent
e s
= in-plac
7 g the ot mre carctlly
Quicksort Quicksort
anaiyts aveage<asecomplesy and prevnting he wort case
ABCDEF
* Similr o the merge ot qicksort perorms O(n) + Worst case of the quicksort is when the input sequence is sorted.
operations at ach leve In recursio ABCDE « I the input sequence i (approximately) random, the xpected number of
« The verl complsity s propentinal o clements in each divide is n/
where U depth of the & ABCD + o reduce the probabiliy of worst case, rndomized quicksort picks the pivot
+ The recursion tre of merge sort is balanced, so depth / randomly
islogn. ABC the median of th pivot,bu
+ For quicksort we do not have a balanced-tree \ e e e T e
guarantee AB + A common approach is picking three values (typically fist, middle and last)
+ In the worst case, the depth o the tree can be 1, A from the sequence, and selcting the median of three’ as the pivot
resulting in O(n’) complexity K

Quicksort

+ Complexity: O(nlog) average, O[n?) worst
« Despite ts worst-case O(n?) complexity, quicksortis faster than merge sort on
average (in practice)

. pl version is more
common)

« Quicksort is not stable

+ Quicksortis one of the most-studied algorithms: there are many variants, its
properties are well known

pl

Sorting algorithms so far, and the lower bound

Algorithm _ worst_average_best__memory _in-place _stable
e n T ves yes
non? n 1 yes yes
nlogn nlogn nlogn n o yes

nlogn nlogn logn yes no
+ Can we dobetter than O{nlogn)?
the answer

turns out to be o’
« Lower bound of worst-case sorting is Q(nlog n)
+ In some special cases, linear-time complexity is possible

Bucket sor

introduction

« Bucket sort puts elements of the input into a pre-defined number of ordered
buckets’

« Elements i each bucket s sorted (typically using insertion sort)

« We can than retrieve the sorted elements by visiting each bucket

s to each other

bucket to place them
« In special cases, this results in O[n) worst-case complexity

Bucket sort

demonstration

+ While placing the elements into the buckets, no
omparisons between the keys

« Inside the buckets worst-case O(n?] (insertion sort)

+ What if we had as many buckets as the keys?

2 Otn)sonimgame

Radix sort

« Ina large number of cases, we want to sort objects with multiple keys
« In such cases, we define the order of key pairs as
(ki 1) < (K2, L2) i Ky < Ky, or kg =Ky and Ly < 1
« This definition can be generalized to key tuples of any length
« This ordering is known as lexicographic or dictionary order
i

for this purpose

Summary
* Sorting s anmportant and welltudisd omputationl poblns
5 inp optimized,
R ‘multiple basic algorithms
« Naive sorting algorithms run in O(n?) time
+ Lower bound on time is Q(nlogn), a

algorithms achieve this
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)
+ And a fun way to see sorting in action:
https://uus. youtube. con/user/AlgoRythaics
Next:
« Trees

+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter)

https://www.youtube.com/user/AlgoRythmics

Acknowledgments, credits, references

Roberto Tamassia, and Michael H. Goldwasser (2013).

Goodrich, Michael T
Data Structures and Algoritims in Python. |

	Sorting
	Introduction
	Why study sorting

	Bubble sort
	Bubble sort
	Bubble sort
	Bubble sort

	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort

	Merge sort
	Merge sort
	Merge sort
	Merge sort
	Merging sequences
	Complexity of the merge sort
	Merge sort
	Merge sort: summary
	A short divergence to complexity
	A short divergence to complexity

	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Sorting algorithms so far, and the lower bound

	Bucket/radix sort
	Bucket sort
	Bucket sort
	Radix sort

	
	Summary

	Appendix
	Acknowledgments, credits, references

