Algorithmic patterns
Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-17)

Çağ̛n Çoltekin

ccoltekinasfa.uni-tuebingen.de
Univeraity of Tubingos
Seminar fur Sprachwiksenschaft
Winter Semester 2023/24

Overview

- Some common approaches to algorithm design
- Revisiting recursion
- Brute force
- Divide and conquer
- Greedy algorithms
- Dynamic programming

Recursion

linear search again
Your task from the first lecture: writing a recursive linear search.

	the complete code
$\begin{aligned} & \text { if vel - asqual : } \\ & \text { risturn 1 } \end{aligned}$ return fl_saurch(ieq [1:], wal, 1+1)	$\begin{aligned} & 1 \text { def rl_search (seq, val, } i-0)= \\ & 2 \text { if not seq: } \\ & 3 \text { return None } \\ & 4 \text { if val }- \text { seq }[0]: \end{aligned}$
- And we need a base case: if not atg: 8 mply sequance	$\begin{aligned} & \text { A } \begin{array}{l} \text { if val }-=\text { seq }[0]: \\ 5 \\ \text { return } 1 \\ \text { return rl_search (seq[1:], val, } 1+1) \end{array} . \end{aligned}$

Can we improve this?

How does this recursion work
recursion trace/graph

Another recursive example

every algoerthm course is required to introduce Fibonaca numbers
Fibonacci numbers are defined as:
$F_{0}=0$
$F_{1}=1$
$F_{n}=F_{n-1}+F_{n-2}$ for $n>1$

- Recursion is common in math, and maps well to the recursive algorithms

```
1. def fib(n):
= if n < - 1
return n
    return fib(n-2) + 1fb(n-1)
```

- Note that we now have binary recursion, each function call creates two calls to self
- We follow the math exactly, but is this code efficient?

Visualizing binary recursion

Scatann ss/themary a timenen
Wran semata mava4 $1 / 2$

Complexity of (naive) Fibonacci algorithm

Brute force

In some cases, we may need to enumerate all possible cases (e.g., to find the best solution)

- Common in combinatorial problems
- Often intractable, practical only for small input sizes
- It is also typically the beginning of finding a more efficient approach

Brute force

example: finding all posible ways to segment a string

- Segmentation is prevalent in CL
- Examples include finding words: tokenization (particularly for writing systems that do not use white space)
- Finding sub-word units (e.g., morphemes, or more specialized application
compound splitting)
- Psycholinguistics: how do people extract words from continuous speech?
- We consider the following problem:
- Given a metric or score to determine the "best" segmentation
- We enumerate all possible ways to segment, pick the one with the best score

How can we enumerate all possible segmentations of a string?

Segmentation

a recurssve solution

def segnent_r(seq)
 segs - []

i len(seq) $-=1:$
return [[seq]]
for seg in segnent_r(seq[1:])
segs append ([seq[0]] + seg)
segs append ([seq $[0]+\operatorname{seg}[0]]+\operatorname{seg}[1:])$
return segs

Segmentation
examplejanalysts

Enumerating segmentations

sketch of a non-recursstve solution

' 1 ' means there is a boundary at this position

- Problem is now enumerating all possible binary strings of length $n-1$ (this is binary counting)

Divide and conquer

- The general idea is dividing the problem into smaller parts until it becomes trivial to solve
- Once small parts are solved, the results are combined
- Goes well with recursion
- We have already seen a particular flavor: binary search
. The algorithms like binary search are sometimes called decrease and conquer

Divide and conquer
General sdea

Divide and conquer

an example nearest neighbors (only a sketch)

- Task: find the closest two points

- Direct solution:
$20 \times 20=400$ comparisons 1
- Divide
- Solve separately (conquer):
$10 \times 10+10 \times 10=200$ comparisons
- Combine: pick the minimum of the individual solutions

- Gain is higher when n is larger, and we divide further

Greedy algorithms

- An algorithm is greedy if it optimizes a local constraint

For some problems, greedy algorithms result in correct solutions

- In others they may result in 'good enough' solutions
- If they work, they are efficient
- An important class of graph algorithms fall into this category (e.g., finding shortest paths, scheduling)

Divide and conquer
an example: nearest neighbors (only a sketch)

- Task: find the closest two points
- Direct solution:
$20 \times 20=400$ comparisons 1
- Divide
- Solve separately (conquer):
$10 \times 10+10 \times 10=200$ comparisons
- Combine: pick the minimum of the
individual solutions

- Gain is higher when n is larger, and we divide further

Divide and conquer
summary

- This is probably the most common pattern
- Divide and conquer does not always yield good results, the cost of merging should be less than the gain from the division(s)
- Many of the important algorithms fall into this category:
- merge sort and quick sort (coming soon)
- integer multiplication
- matrix multiplication

Greedy algorithms

a simple example: 'change making'

- We want to produce minimum number of coins for a particular sum s

1. Pick the largest coin $c<=s$
2. set $s=s-c$
3. repeat $1 \& 2$ until $s=0$

Is this algorithm correct?

- Think about coins of $10,30,40$ and apply the algorithm for the sum value of 60
- Is it correct if the coin values were limited Euro coins?

Dynamic programming

- Dynamic programming is a method to save eariler results to reduce computation
- It is sometimes called memoization (it is not a typo)

Again, a large number of algorithms we use fall into this category, including common parsing algorithms

Warersmearampa $\quad 7 / 2$

Dynamic programming
example: Fibonaci

```
def memofib(n, memo - {0:0, 1:1}):
    if n not in nemo:
    meno[n] - memofib(n-1) + nemofib(n-2)
    return meno [n]
```

- We save the results calculated in a dictionary,
- If the result is already in the dictionary, we return without recursion
- Otherwise we calculate recursively as before
- The difference is big, but there is also a 'neater' solution without (explicit) memoization

Summary

- We saw a few general approaches to (efficient) algorithm design
- Designing algorithms is not a mechanical procedure: it requires creativity
- There are other common patterns, including
- Backtracking, Branch-and-bound
- Backtracking, Branch-and
- Randomized algorithms
- Randomized algorithms (sometime called swarm optimization)
- Transformation
- Designing algorithms is difficult (possibly, not as difficult as analyzing them) Next:
- Sorting
- Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Complexity of Fibonacci algorithm with dynamic pogramming

Nearest neighbors
 an exercise

- Define and implement a divide-and-conquer algorithm for nearest neighbor problem, which divides the input into two until the solution becomes trivial
Analyze your algorithm and compare to the naive version sketched above (an implementation was provided in the previous lecture)


```
|of fl_marc&(14q, val, 1-0):
```



```
ulae: return 1
```



```
(heqtion wal
```

Which one is faster, and why?

```
daf r1-searctz2(aqq, va1, 1~0):.
if i < =uccuqu):
    if veturn Kone
    cic
```


Segmentation
with yield
1 def segment_r(seq):
If len(seq) - 1
yield [seq]
else: for
for seg in segnent_r (seq[1:]):
yield $[s e q[0]]+\operatorname{seg}$
yield $[s e q[0]+\operatorname{seg}[0]]$
with yield

1 def segment_r (seq):
11 len(seq)
yield [seq]
for yield [seq[0]] + seg y yeld $[s e q[0]+\operatorname{seg}[0]]$ - $\operatorname{seg}[1:]$
c.caman $\mathrm{ss} /$ theminy artuingan

Acknowledgments, credits, references

图 Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013). Data Structures and Algorithms in Python. John Wiley \&e Sons, Incorporated. ISEN 9781118476734.

	Woner Smearampa	

thersmearazeaz
\square

