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Definition Types of graphs

« A (simple) graph G is a pair (V. ) where
- Visa et ot s (o vrte) « An undirected graphis a graph with only
Y%y eV and x 4] isasetof dges
et e s e
+ A graph represent a set of objects (nodes)
and the relations between them (edges)
« Edges in a graph can be either directed, or
undirected
~ directed edges (also calledarcs) are

~ Transportation (e, railway) networks
+ Adinced grp (dlgmph) isa graph with
only directe
ourse a.,,..‘aé..m
« A mixed graph contains both directed and
undirected edges D——F

2tuples,oroered pars (order s mportant) =y e
nondered paits, or
pair sets (order is not important)
Types of graphs Types of graphs

« An undirected grapi s a graph with only
undirected
- Transportation (e g, railway) networks

+ Adircted graph (digraph) is a graph with

+ An undivcted graph s  graph with only
undirected ed;
- Transportation (e.g, railway) networks
+ Adincel grph (dlgmph) isa graph with

only directed edge only directe
= course dependencies - course ug,,a..dmm
+ A mixed graph contains both dirccted and « Amixed graph contains both directed and )
undirected edges D——F undirected edges D—F
= acitymap ~ sty map
More graphs types More definitions

A graph is simple if there is only a single edge between two nodes (our earlier
definition)

« I the edges of a graph has associated weights, it is called a weighted graph
s mnw!rl( graph contains edges from each node to every other node

endpoints of the edge

+ Anedge is called incident to a node if the
node is one of its endpoints. Two nodes are
adjacent (or they are neighbors) if they are

. tite graph has nodes, incident to the same edge
e « The degree (or valency) of a node is the

« A graph is called a multi-grapi i there are multiple edges (with the same. ‘number of its incident edges.
o i

« Two nodes joined by an edg are called the
¢

« Ina digraph indegree of a node is the number A and B are endpoints of edge 1
“A a two nodes. of incoming edges, and autdegree of a node s
the number of outgoing edges

More definitions More definitions

+ Two nodes joined by an edge are called the + Two nodes oined by an edge are called the
endpoints of the edge B, endpoints of the edge

+ An edge s called ncident to a node i the ) ¢ « An edge s called incident to.a node i the
node is one of its endpoints. Two nodes are £ node is one of its endpoints. Two nodes are
adjacent (or they are neighbors) if they are E adjacent (or they are neighbors) if they are
incident tothe same edge s o incident to the same edge

+ The degree (or valency) of a node s the d i e
number of its incident edges Dk number ofts inciden

+ Ina digraph indegree of a node s the number  edge 115 incident to A and B « Ina digraph indegree e deg(n) =
of incoming edges, and outdegree of a node is of incoming edges, and outdegree of a node is
the number of outgoing edges. the number of outgoin edges

More definitions More definitions
. Tueo nodes oined by an edge are called the o cdgs e ke bt s
endpoints of the edge B :
+ An edge s called incident to a node i the s ¢ « Fora directed graph parallel edges are ones
nodeis one of it endpoints. Two nodes are £ with the same direction 0
adjacent (or lhevnmnelghbors) i they are AT oS «+ A self-loop is an edge from a node to itself A B—C
incident to the same edge. : {4 P + A path s an sequence of alternating edges
e T g and nodes
number of its incident edges D——F « Acyele s a path that starts and ends at the D’
+ Ina digraph indegree of a node s the number  indeg(A) 1, outdeg(A) = 3 same node
of incoming edges, and outdegree of a node s « A path ora cycle s a snple if every node on
the number of outgoing edge: the path is visited only once
More definitions More definitions
+ Two edges are pamall i their both endpoints + Two edges are paralel i their both endpoints
are the same. are the same
+ Fora directed graph paralleledges are ones « Fora directed graph parallel edges are ones
with the same direction with the same direction
+ Aself-loop is an edge from a node to itself 80— « Aself-loop is an edge from a node to itself A s—¢
+ A patis an sequence of alternating edges « A path s an sequence of alternating edges
and nodes and nodes
« Acycleis a path that starts and ends at the bl « Acycleis a path that starts and ends at the D’
same node
+ A path ora cycleis a sinple f every node on + A path ora cycle is a sl if every node on
the path i visited only once the pathis visited only once




More definitions

« Two edges are parallel if their both endpoints
are the same.
« For a directed graph parallel edges are ones
with the same direction
+ Aself-loop is an edge from a node to tself A
« A path s an sequence of alternating edges

\./B
At |/
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« Acyeleis a path that starts and ends at the
« Apath ora cycle s a simple f every node on
the path is visited only once

More definitions

« Two edges are parale if their both endpoints
are the same

« For a directed graph parallel edges are ones.
with the same direction

« A path s an sequence of alternating edges
and nodes

« Acycle s a path that starts and ends at the
same node

« A path ora cycle is a sinyle if every node on
the pathis visited only once.

« Aself-loop is an edge from a node to itself AT

More definitions

« Two edges are parallel if their both endpoints
are the same.

« For a directed graph parallel edges are ones
with the same direction

More definitions

« A node X is reachable from another (Y) if
there is a (directed) path from Y to X

« A graph is connected if all nodes are
reachable from each other

+ Aself-loop is an edge from a node to tself AT — + A directed graph s strongly connected i all
« A path is an sequence of alternating edges nodes are reachable from each other
and nodes « Asubgraph a graph formed by a subset of
D hodes and edges of a grapl

+ Acyeleis a path that starts and ends at the

same node

+ A path ora cycle s a simple f every node on
the path is visited only once

« Ifa graph s not connected, the maximally
ted the

connected components

More definitions

+ Anode X s rachabie from another (Y) if
there s (directed) path from Y to X

« A graph is connected fall nodes are
reachable from eac

+ A directed graph is strongly connected i all
nodes are reachable from each othe

« A subgraph a graph formed by a subset of

and edges of a graph

« 1fa graph is not connected, the maximally
connected subgraphs are called the G
connected components
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. Sl

. + Ifa graph is not connected, the maximally

More definitions

+ A node X i rechuble from anather (Y) if
there is a (directed) path from Y to X

*+ Adiected raph s strongly cometdf
nodes are reachable from each
D—F « A subgraph a graph formed by a abetof
nodes and edges of a grapl

1 connected subgraphs are called the (<
connected components

More definitions

+ Anode Xis reachable from another (Y) if
there is a (directed) path from Y to X

« Agraph is connected if all nodes are
reachable from each other

« Adirected graph s strongly connected i all
Rodes are reachable from each other

+ Asubgrapit a graph formed by a subset of
nodes and edges of a grapi

« Ifa graph is not connected, the maximally
connected subgraphs are called the
connected components

More definitions

« Anode Xis reachable from another (Y) if
there is a (directed) path from Y to X

« Agraph is connected if all nodes are
reachable from each other

« Adirected graph s strongly connected i all
nodes are reachable from each other

« Asubgraph a graph formed by a subset of
nodes and edges of a graph

« Ifa graph is not connected, the maximally

ted the

connected components
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+ Aspanning ),.bgm,.r. ofa gmph s subgraph that includes all nodes of the + A spanning subgraph of a raph i a subgraph that includes all nodes of the

smph graph

+ Atees a connected graph without cycles + A et a connected graph without cycles

+ A spanning treis a spanning subgraph which i atree + A spanning tre i a spaning subgraph which i  tree

+ Aforestis adisconnected acyclic graph + A forest i  disconnected acyclic graph
Some properties Some properties
ek degres i e e e of e e

- For a simple undirected graph with n nodes and m edges
+ Foran undirected graph with m edges and setof nodes V
deglv) = 2m
e o parallel edges
+ All edges e counted twice for each node they are incident to  thereare o e loops
o e oo i degreeof a node s —
O LIS VER R TG AT DL DL 380 « Putting this together with the previous property
« For a directed graph with m edges and set of nodes V. s B P property
P _nn-1)
3 indegtv) = 3 outdegv) = S DS
=] &  Fora direced graph with n nodes and m edges
<o)




The graph ADT Edge list

« A graph is a collection of nodes and edges
« Basic operations include
dd a new node
femove an existing node
return true i the nodes are adjacent (for a digraph true only if
there s a directed link from uto v
neighbors () enumerate the neighbors of the node (for adigraph we lst the
nods reachable through outgoing edges by default)
remove_odga(u,v) remove an exsting edge
add edge(u,) addanew edge
node£() enumerate the nodes in the graph
adge=() enumerate the edges in the graph

+ Wekeep a simple a simple lst of
edges (and possibly nodes)

+ Simple structure, complexity of
some operations (n nodes, m
edges)

add_edge(v) O(1)

romove_odga(v) O(m)

nods(v) O(m)
ent(u,v) O(m)
neigrbors(v) O(m)

adgac

Adjacency matrix
b

s P

YN

~—k

Adjacency list

+ We keep simple lists for nodes and edges

+ We keop an x n matrix
5 + Complexity of some operations: Al B| C + Complexity of some operations:
add_nodar) O(1) add_node(v) Ofn
o L O NEED o anedaty) o)
sdjacentu,) Olmin{deg(u).deglv)) wajacentu) O(1)
aesgiora(n) Oldeglv) 3 [ nesgnbora(n) O(n)
©
pes
)
Interesting problems on graphs Summary
+ Is there a (directed) path betuween two nodes?
+ Whatis the shortest path between tvo modies?
+ Is therea cycle in the graph? + Graphs are data structures with many applications
+ Isth each edge exacty once? + Reading on graphs: Goodrich, Tamassia, and Goldwasser (2013, chapter 14,
+ Isthere  cycl that ses each node exactly once? (Hamiltonian path) Next:

« Are all nodes of the graph connected? + Graph traversals
« s there a node that breaks the connectivity if removed?

« I the graph planar: can it be drawn without crossing edges?

« Are two graphs isomorphic (have the same structure)?

 Whats the importance of a web page, based on the links pointing to t?

« Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)
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