Minimization of FSA

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-17)

Çağn Çoltekin

ccoltekindsfa.uni-tuebingen.de

> Univeraty of Tubingon Seminar fur Spractwisensenctaft

Winter Semester 2023/24

DFA minimization

- For any regular language, there is a unique minimal DFA
- By finding the minimal DFA, we can also prove equivalence (or not) of different PSA and the languages they recognize
In general the idea is:
- Throw away unreachable states (easy)
- Merge equivalent states
- There are two well-known algorithms for minimization:
- Hopcroft's algorithm: find and eliminate equivalent states by partitioning the set of states
Brzozowski's algorithm: 'double reversal'

Finding equivalent states

Intuition

The edges leaving the group of nodes are identical. Their right languages are the same.

Minimization by partitioning

Create a state-by-state table, mark disfityguishable
pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $x \in \Sigma$

Cruman SE/Lrimaty ot Tamen \qquad

Minimization by partitioning

Create a state-by-state table, mark distitrguishable pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $\mathrm{x} \in \Sigma$

Cchatan ss/ hromivartuamen

whir semaramiat i/7

Minimization by partitioning

tabular version

Create a state-by-state table, mark distion yifshadud pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $x \in \Sigma$

Minimization by partitioning

Create a state-by-state table, mark distingurishinble pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $x \in \Sigma$

Create a state-by-state table, mark disfinguishable pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $\mathrm{x} \in \Sigma$

Minimization by partitioning

Minimization by partitioning

- Create a state-by-state table, mark disting guishinble pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $\mathrm{x} \in \mathcal{L}$

tsumaracenat +is

Minimization by partitioning

Create a state-by-state table, mark disfinguisshable pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $\mathrm{x} \in \Sigma$

Minimization by partitioning
tabular version

Create a state-by-state table, mark distinguishable pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $\mathrm{x} \in \Sigma$

Minimization by partitioning

- Create a state-by-state table, mark dostinguishablic pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $x \in \Sigma$

- Merge indistinguishable states
- The algorithm can be improved by choosing which cell to visit carefully

An exercise
find the minimum DFA for the automaton below

Minimization by partitioning
tabular version

Brzozowski's algorithm

double reverse (r), determinize (d)

[^0]Wharsenemamai

Acknowledgments, credits, references

目 Hopcroft, John E. and Jeffrey D. Uliman (1979). Introduction to Autonata Theory, Languages, and Computation. Addison-Wesley Series in Computer Science and anguages, and Computation. Addichesle, Series in Computer
F. Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: Au Introduction fo Natural Language Processing, Computational Linguistics, and Speech Recognition. second edition. Pearson Prentice Hall. $\operatorname{ssen}: 978-0$-13-504196-3.

\square

[^0]: Minimization algorithms
 final remarks
 There are many versions of the 'partitioning' algorithm. General idea is to form equivalence classes based on right-language of each state

 - Partitioning algorithm has $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ complexity
 - Double reversal' algorithm has exponential worst-time complexity
 - Double reversal algorithm can also be used with NFAs (resulting in the minimal equivalent DFA - NFA minimization is intractable)
 - In practice, there is no clear winner, different algorithms run faster on different input
 - Reading suggestion: Hopcroft and Ullman (1979, Ch. 2\& 3), Jurafsky and Martin (2009, Ch. 2)
 Next:
 - FST
 - FSA and regular languages

