Directed graph algorithms
Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)
Gagn Caltekin

ceoltekindats. uni-tuebingen. de

Universty of Tubingen
S e Sprachwisnmachtt

Winter Semester 2023/24

Directed graphs

« Directed graphs are graphs with directed edges.

P sraphs
+ We willcover some of these operations, and some intereting sub-types of
directed graphs
- Transiive closure
~ Dirccted acyclc graphs
 Topological ordering

Some terminology

« For any pair of nodes wand v in a directed graph

~ Adirected graph isstrongly connected 1 there is a directed path betsween u o
ndviow
~ Adirected graph is omi-comnectedif thereis directed path between t o v or v
tou

~ Adirected graph is weakly connected i the undirected graph obtained by
replacing al edges with undirected edges result n a connected graph

Checking strong connectivity

« Naive attempt: traverse the graph
independently from each noce (strongly
connected i alltraversals visit all nods)

~ Time complexiy: O(n{n + m))

+ Abetter one:

- traversethe graph from an arbitary node
~ reverse all edges, raverse again

~ intuition; i there I a reverse path from D to
A, then D s reachable from A
« Time complexity: O(n +m]

« Note: we do not need to copy the graph, we

only need to do ‘reverse edge’ queries

Transitive closure

Computing tra

ol

- We
efficiently
« Pre-computing all nodes reachable from every other node is beneficial in
some applications.
« The transitive closure of a graph is another graph where
~ The set of nodes are the same as the ariginal graph

« Astraightforward algorithm:
- run n graph traversals, from

each node i the graph,
between the start node to any node discovered by the traversal

= tme complexty s O{n(n.
+ Floyd-Warshall algorithm is another well-k
eficiently in some settings

« Foran undirected graph, P
the connected components

Floyd-Warshall algorithm

for finding ransitiveclosure

ABCDETG
. agraphis . @ P ElT T T T
« Floye-Warshllalgorihm s an eraive algorithm that
computes the transitive closure in n iterations Bl T T RO
 The lgorithm stats with sting transitive closue o the TTFTTOTT
original graph k B E ¢ ¢
s dvected edge (v,) o ransiive dosure i already
contains both [vi.vi) and (vi.v;) R ¢ L
« Itis efficient if graph is implemented with an adjacency i c T omER T T
matrxand i 13 oy sparse M "
Floyd-Warshall algorithm Directed acyclic graphs
« Direcedacyeic gphs (DAGS) are
+ Time complexty 15 O(n?) + DAGs have many practical applications (mainly, dependency graphs)
T = [rowl:] for row in G) A - Prerequisites between courses in a study program
for K in rango(w): Jomemtssss Clar nhertance i an objectariened progrm
for i in range(n): nin+m) ~ Scheduling constraints over tasks in a project
Bl e ot hat i dnse graph et (el e DAy
for § in range(@): o) A Compact epresentation of 5 st of words:
ifj=ior j + A version of this algorithm is also

continue
TG = TG or \
TG G and TOD (3]

used for finding shortest paths in
weighted graphs (later in the

——————

Directed acyclic graphs

ENCY RESOLUTON.

DAG exammple

a (hypothetical) course prerequisite graph

https://www.xkcd.com/754/

Topological order

« A tapological ordering of a directed graph is a sequence of nodes such that for
every directed edge (11,v) w is listed before v

+ A topological ordering lists ‘prerequisites’ of a node before listing the node
itself

« There may be multiple topological orderings
« In the course prerequisite example, a topological ordering lists any acceptable
order that the courses can be taken

Topological order example

Topological sort

stgorthen

topo, ready = 0, 0
incount;
for u in nodes
incount [u] - u_indegree()
if tncouns [l == 0
ready. append ()
while len(ready) > 0
u - Teady.pop()
topo. append(v)
for v in u_nelghbors)
incount [v] - 1
if incount () = 0
Teady. append(v)

+ Keep record of number of incoming edges

« Anode s ready to
i there no unprocessed incoming edges

« Running time is O(n + m)

« If the topological ordering does not contain
all the edges, the graph includes a cycle

be placed in the sorted list

Topological sort

demonstration

A 8 ready sorted
c
B
D 0 0 2
N X G
B E G 2
D
H
0 0. F

c “H

Summary

+ We covered
~ Finding strongly connected components
~ Finding the transiive closure of a digraph
- DAGs and topological ordering,
« Reading on graphs: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)
Next:
. shortest paths

Acknowledgments, credits, references

B Goodrich, Michael T, Roberto Tamassia, and Michal H. Goldwasser (2013)

Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. 1
781118476734,

	Directed graph algorithms
	Introduction/motivation
	Directed graphs
	Some terminology

	Strong connectivity
	Checking strong connectivity

	Transitive closure
	Transitive closure
	Computing transitive closure on directed graphs
	Floyd-Warshall algorithm
	Floyd-Warshall demonstration
	Floyd-Warshall algorithm

	DAGs and topological order
	Directed acyclic graphs
	Directed acyclic graphs
	DAG exammple
	Topological order
	Topological order example
	Topological sort
	Topological sort

	
	Summary

	Appendix
	Acknowledgments, credits, references

