Dependency parsing
Data Structures and Algorthms for Computational Linguistis 1l
)

Gagn Caltekin

ceoltekindats. uni-tuebingen. de

ity g
Seninae i Sprachwisnmachtt

Winter Semester 2023/24

Dependency grammars

« Dep y popularity in linguistics (p: lyin CL)
rather recently

« They are old: roots can be traced back to Panini (approx. 5th century BCE)

+ Modern dependency grammars are often attributed to Tesnicre (1959)

Th idea s capt words, rather
them into (abstract) consfituents.

John saw Mary

Dependency grammars

+ No constituents, units of syntactic structure are words
by

between syntactic units
« Each relation defines one of the words as the head and the other as dcp
« Typically, the links (relations) have labels (dependency types)
+ Often an arificial roof node is used for computational convenience

Dependency grammars: alternative notation(s)

root root

1 duck

Dependency grammars: common assumptions

« Every word has asingle head
+ The dependency graphs are acyclic

+ The graph is connected John saw Mary yesterday walking n the park
+ With these assumptions, the representation s a ree: . sraph tis said
+ Note but common for depe otherwise non prjectioe
parsing + Non-projctivity stems from d
 Proj = b ted
+ Ingemen, dependencies b

Dependency grammars: projectivity

Dependency grammars
Advantages and dssdvantges

Close relation to semantics.
+ Easier for lexible/free word order
Lots,lots of (multi-lingual) computational work, resources.
+ Often much useful in downstream tasks
More efficient parsing algorithms
~ No distinction between modification of head or the whole ‘constituent’

toannotat dinati

Dependency parsing

+ Dependency parsing has many similarities with context-free parsing (e.3,
trees)

+ Italso has some differences (e, number of edges and depth of trees are
limited)
+ Dependency parsing can be.
~ grammar-driven (hand crafted rules or constraints)
~ data-driven (rules/model s learned from a treebank)

Grammar-driven dependency parsing

+ Grammar-driven dependency parsers typically based on
- lexicalized CF parsing
~ constraint satisfaction problem

e
“Soft, or welghied, constzaintsare sed
- Practical implementations exist

+ Our focus will be on data-driven methods

Data-driven dependency par:
common methodsfor dta-drven parers

ing.

. -pendency pars
« The grammar’, and the (soft) constraints are learned from a trecbark
« There are two main approaches:
o bare s o the bt e st cﬂmp]c
~ find minimum spanning tree (VST
7 daptons of CF chart st (0, CKY)
(in general, computationally more expensive)
Transiton-based similt o shifteduce (LR(K) parsing

i
- Linear time complexity

Shift-Reduce parsing Transition-based parsing
s through n example iercnces fom it redce parsing
B osoriserise
E P) Num P Num | P/ Num
. (LR) parsers for formal | 4
are determined by a table lookup
§ Sor e am « Natural languag P parser’s actions
H T T — cannot be made deterministic
E : et e . oPmnW are Gomeat) iferen:ntnd o e sing
H Sty iswitha
i T R R
e 3 e P
Sk e (7 P Num)
v (5 8P
P

Transition based parsing

« Use a stack and a bufer of unprocessed words
« Parsing as predicting a sequence of transitions like
Ler-Arc: mark current word as the head of the word on top of the stack

A typical transition system

ok nestuond
(@1 Wi, W 1B A)
=3 uffer o

LerrArc,: (| wiw; |B.A) 5 (@

Riciir-Axc: mark current word as a dependent of the word on top of the stack. « popwi,

Sturt. push the current word on to the stack
+ Algorithm terminates when all words in the input are processed
« The transitions are not naturally deterministi, best transition is predicted

using a machine learning methos

+ add arc (w;, 7. w) to A (keep w; in the buffer)
RicnrAge,: (0] wiw;|BA) = (0
« popwi,

+ add arc (wi, 7. ;) 0 A,
+ move w; to the buffer
@ wilBA) S (olw, B.A)

« push w; to the stack
+ remove it from the buffer

St

i B A UTwy rwi]})

wil B AU wir w1

Transition based parsing: example

Transition based parsing: example

Sturt Lerr-Arc(xsum)

Transition based parsing: example

ion based parsing: example

St Ricrr-Anc(om)

Note: We need Starr for NP attachment.

Transition based parsing: example

Sturt

L2070

Swrr

Transition based parsing: example

Lerr-Arc(case)

Transition based parsing: example

RicrArc (o)

with

Transition based parsing: example

‘Transition based parsing: example

Ricr-Asc(soor)

binoculars with

Sturr

binoculars

Transition based parsing: example

stack
buffer

Making transition decisions

. U (for formal I
to determinize the parser actions

table

traina
+ Almost any machine learning (classification) method is applicable
« The features used for prediction is extracted from the states of the parser:
~ Top-k words on the stack
- Nextem word:
~ Transition decisions made so far (the arcs)
+ Given these objects, one can extract and use arbitrary features:
- Words as categorical variables.
POS tags

~ Embeddings

The training data

parser configurations
« The data obtaining g data
+ The general idea s to constucta transiton sequence by performing a mock’
parsing using trecbank annofations as an ‘oracle’
« There may be multiple sequences that yield the same dependency tree, this
procedure defines a canonical’ transition sequence.
« For example,
LurrAxc, if (B(O].v,000]) € A
Ricr-Are, i (000] v, Bl0]) € A
and all dependents of B 0] are attached
Strr otherwise

Non-projective parsing

+ The transition-based parsing we defined so far works only for projective
dependencies
« On¢
operations:
- Swroperation hat swaps okens n e sackand the bufier

. Anmher mthod s pdo-profcive parsin
reprocessing to projectivize’ the trees before training

~ post-processing for restoring the projectvity after parsing
+ Revntroduce projectivityfor the marked dependencies

Pseudo-projective parsing

A herng s

scheduled on the issue today.

Nan projctc e

Trans

ion based parsing: summary/notes

« Linear time, greedy, projective parsing.

« Can be extended to non-projective dependencies

+ We need some extra work for generating gold-standard transition sequences
from trecbanks

Eary errors propagate,
long-distance dependencies

« The greedy algorithm can be extended to beam search for better accuracy
(stil inear time complexity)

Do A Deaing e sholed o the dsue today
MST algorithm for dependency parsing MST example

« For directed graphs, there is a polynomial time algorithm that finds the
tree (MST) of a ful

(ChurLiu-Edmonds algorithm)
witha

e

For cach mode slct the ncoming are wih highet weght)

MST example MST example
Roor Roor
-
1 saw
g < /A P! =
N her duck 4 her duck her. duck?
~ S~i—
Dteet the cyce, contract them 8 ‘single node’ Pick the best ac into the combined node, break the cycle
Properties of the MST parser
ol « The MST parser s non-projective
TC « There is an algorithm with O(n?) time complexity
. increases with ty but stll close to
quadratic)
+ The weights/parameers are associated with edges (often called
‘arcfactored)
1 « We can learn the arc weights directly from trecbank
her duck + However, it i difficult to incorporate non-local features
Once il cyles e chiminate, the rsul i the MST

External features

« For both type of parsers, one can obtain features that are based on
unsupervised methods Such as.

~ clusterin
- alinmeniransfer rom bl corporarcbanks
vector representations (embeddings)

- pre-trained language models

Evaluation metrics for dependency parsers

+ Like CF parsing, exact match is often too strict

- As) pe
s score (UAS y typ
sure often used for d
" particular dependency type
precision s the atio of orrectly identified dependencies (of a certain type)
recall

e
£measure c Bzt

Evaluation example Dependency parsing: summary
+ Dependency relatons ae often semantically easier o interpret
D) " oot ardr gt e
« Dependency relations e beween words,no hrass orcfher absractrodes
M H /-\ are postlated
her duck I her duck + Two general methods;
ransiton based.gredy search, norlocal feature, fat, Less accurate
graph based exack search,locl eatures slower, accurate (within model
limitations)
Precisionnsub;. . f different P
Recallomnyy 100% * Nor-projective parsing is more dffcult
Precsiongsy 0% (assumed) * Most parsing research has focused on learning
Recallny o methods (mainly using neural networks)
 Reading suggestion Jurasky and Martn (2009, drat chapter 14) Kbl
McDonald, and Nivre (2009)

http://dickgrune.com/Books/PTAPG_1st_Edition/BookBody.pdf

	Dependency parsing
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency grammars: alternative notation(s)
	Dependency grammars: common assumptions
	Dependency grammars: projectivity
	Dependency grammars

	Dependency parsing
	Dependency parsing
	Grammar-driven dependency parsing
	Data-driven dependency parsing

	Transition-based parsing
	Shift-Reduce parsing
	Transition-based parsing
	Transition based parsing
	A typical transition system
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Making transition decisions
	The training data
	Non-projective parsing
	Pseudo-projective parsing
	Transition based parsing: summary/notes

	MST for dependency parsing
	MST algorithm for dependency parsing
	MST example
	MST example
	MST example
	MST example
	Properties of the MST parser

	Evaluation/alternatives/improvements
	External features
	Evaluation metrics for dependency parsers
	Evaluation example

	
	Dependency parsing: summary

	Appendix
	Acknowledgments, references, additional reading material

