What are we analyzing?
Analysis of Algorithms
Data Structures and Algorithms for Computational Linguistics Il
(1SCL-BA07) « S far, we frequently asked: “can we do better?”
+ Now, we turn to the questions of
= what s better?
Gagn Coltekin ~ Tow do we know an algorithm is beter than the other?
ccoltekin®sfs. uni-tuebingen.de « There are many properties that we may want to improve
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How to determine running time of an algorithm?

write the code, experiment

Some functions to know about

Definition

« A few issues with this approach:
~ Implementing somthing that does ot
work i not productive (or fun)

+ A possible approach:

- - al poential NiegN 1) = njoun
= Testwith varying imput inputs Quadratc fr=r
B " version eported 10 years ago,do you really Other polynomials ~ (n) = nk, for k > 3
have an mprovement? Exponential fln) = b for b 1
+ Aformal approach offers some help here Factorial fin) =t

« We will use these functions to characterize running times of algorithms

Some functions to know about
the picture - why e care about their diference

Some functions to know about
the bigger plcture

A few facts about logarithms Polynomials
+ Logarithm is the inverse of exponentiation:

x=logyn b b= + A degree-0 polynomial s  constant function (f(n) — )
« We will mostly use base-2 ogarithms. For us, no-base means base-2 + Degree-1is linear (1(n] =n+)

+ Additional properties: + Degree-2is quadrati (f(n) = n? +n+ ¢)

logxy = logx +Iogy + We generally drop the lower order terms (soon we'l see why)

log 1 = log x — logy « Sometimes it

ill be useful to remember that
logx® =

nn+1)
142 4n=2intl)
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logyx =

« Logari than

Combinations and permutations Proof by induction

emt=nx(m-1x..x2x1
« Permutations « Induction is an important proof technique
e _ « Itis often used for both proving the correctness and running times of
Pl = (=) x k=) = algorithms
i i « Tt works if
+ Combinations n choose K _ Show tha base case holds

ps of an algorithm (I

X w Pkl  Assume the resul s corec o , show that it lso olds for -+ 1
= (3) = et =i
Proof by induction Formal analysis of running time of algorithms
Bampleshow that 1423+ = i+ 112
+ Base case, for n=1
nx22
« Assuming -0

+ The running time is characterized as a function of input size
+ We are aiming for an analysis method
~ independent of hardware / software environment
does not require implementation before analysis
= considers all possible inputs

we need to show that
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How much hardware independence?

quite, bt ot completely we assme a RAM model of computing

+ Characterized by random acc
sequential memory, like a tape)

- Wea P P (addition,
comparison) in constant time.

« The data and the instructions are stored in the RAM

s memory (RAM) (e.g. in comparison to.a

« The processor fetches
« This is largely true for any computing system we use in practice

RAM model: an example

« Processing unit performs basic.
operations in constant time

+ Any memory cell with an address.
can be accessed in equal (constant)
time

+ The instructions as well as the data
s kept in the memory

processing unit

+ There may be other, specialized
registers

+ Modern proce
employ a ‘cache’

ing units also

Formal analysis of running time

« Simply count the number of primitive aperations
- Primitive operations include:

- Assignment

- Anthmetic operations.

- Comparing primitve data ypes e, numbers)

- Accessing 3 single memory location

~ Function cals return from functions

« Not primitive operations:

~ loops, recursion.

- comparing sequences

Focus on the worst case

« Algorithms are generally faster on certain input than others
« In most cases, we are interested in the worst case analysis
- Guaraneing worst cas s mporant

+ Average case analysis s also useful, but
- retes dfing distbuton v s put
= often more challen

Counting primitive operations
example: ncarest points the mave lgorthn
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Big-O notation

« Big-O notation is used for indicating an upper bound on running time of an
algorithm as a function of runing time
of an algorithm s O((n)),
" proportional o f{n)asthe input ize . grows
* Moreformaly, ivn unctons () an g, weay that ) i (o)
ere is a constant ¢ > 0 and integer no > 1 such that

fn) < x gln) forn > no

« Sometimes the notation f(n) = O(g(n] is also used, but beware: this equal
sign is not symmetric

Big-O example Big-O, another example
Ty = —2n +518 0 Tin) =n 4301 Ot
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Big:O, yetanother example Back to the function classes
ot O() - prof by picture
Far Definition
Constant T =c
Logarithmic ) = logy n
Linear n
& log f(n) = nlogn
= Quadratic n?
Cubic n®
Other polynomials () = n* for k >3
Exponential b forb> 1
Factorial n
+ None of these functions can be expressed as a constant factor of another
Rules of thumb Rules of thumb,
Drop thelowerorderterms Z
« Inthe big-O notation, we drop the constants and lower order terms Olf(m))
- Any polmomiat dgre 41 ) "
0n - an 4 1 10015 O[] n
~ Drep ny v rdr . logn
10w 1012%) =
o U::“hs:\mpl&ﬂsxpl\'»lon lon® 420 20
-+ 10015 O(5m), but we prefer O] log 2" n
2 W n 4 1001 O(n?), bk we prfer O(1%) ;e g
« Teanstity (1) O{g(n), 3] < O{h(w),then () = Ofh) 00kt 2%
« Additivity: if both (1) and g(n] are O(h(n) (n) + g(n) is O(h(n)) e
ogn!_nlogn




Big-O: back to nearest points

et shortess distance(posace)
= = ieaGoiaie) #2 (constant;
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Big-O examples

inear scarch

« What s the worst-case running time?
2 2asigmens

nincrement

B e
T(n) =3n+3=0(n)

« What s the average-case running time?
2 2assignments

Lem1 3. 2(n/2] comparisans, n/2 increment, 1
return None retum

+ dof Tinear_searcheeq, vaD):
vhile 4 ¢ n:
it seqli] == val
turn i

Tin) =3/20+3=0(n)
+ What about best case?
Note: do not confuse the big-O with the worst case analysis.

o)

Recursive example Why asymptotic analysis is important?
Recurstve binary search “mainum provem sz

. c 5 that + Assume we can solve a problerm of size m i a given time on current harduware
et L0 ) Tin) =+ Tin/2) 2 beter commputer, which runs 1024 tmes faies
T + Thisis a recursive formula, it means et patercomputer whieh .
: Ve This s ecursefor + New problem size we can solve in the same time
s Tn/A) = ¢+ Tin/3) Complex new problem size
; ' + S0,Tin) = 2c-+ T(n/4) =3¢+ T(n/8) 102im
0 T m“‘ = L + More generally, Tin) = ic + T(n/2') Quadratic (n?) 32m
. o B Exponential 2") _ m+10
w e s the good news: i . y

T = lagn £ T01) < Ofiog) algorithms

- T = witha exponentisl lgrithmfs ardare docs ot help
r, see Appendix) !

Worst case and asymptotic analysis

thels
pro s u(-am( and we gt (vey)strong it we oo tht e g,
won't perform worse than the bou

problems,

~ In practice you may prefer an algorithm that does better on average (we'll e
examples from sorting)
+ Our analyses are based on asymptotic behavior
o for a large enough input, asymptotic analysis i correct
con constant or lower order factors are not ahways unimportant
- Aconstant factor o 1001 should probably not be ignored

Big-O relatives

« Big-O (upper bound): f(n)is Olg(n)
if () is asymptotically ess fa or qual to g(r)

() < eglm) forn > ne
+ Big:Omega (lower bound): f(n)is Q(g(n))
if f(n) i asymptotically greatr han or egual t g(n)
n) > cgln) for n > no
« Big:Theta (upper/lower bound): f(n) is B(g(n))
3f f(n) i asymptotically eual o g(n)
f(n) is Olg(n)) and f(n) is Q(g[n))

Big-O, Big-0, Big-: an example

T —nd 4 3n s

O fore=2andn

Tin) < egin) forn > no

Q fore=1andng =0

Tin) > egin) forn > no

© forc=2,no=3,¢’ = Tandn§

and

Tin) < egin) forn > no

Tin) > egln) forn > nj

Summary

andnlog.

« Polynomial algorithms may be acceptable in many cases

« Exponential algorithms are bad

. this Igorithy

« Sublinear (e.5. logarithmic), L

« Reading for this lecture: Goodrich, Tamassia, and Goldwasser (2013,

Next:
+ Common patterns in algorightms
« Sorting algorithms
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12) - up to 12.7
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« Some of the slides are based on the previous year's course by Corina Dima.
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A(nother) view of computational complexity
1NN complte and al that

« A major division of complexity classes according to Big-O notation s between
P polynomial time algorithms
NP non-deterministic polynomial time algorithms.
+ A big question in computing is whether P = NP
« All problems in NP can be reduced in polynomial fime to a problem in a
subelass of NP (NP-complete)
- Solving an NP complete prablem in P would mean proving

et
P-NP
Video from https: //www. youtube. con/vatch7v=YX40DAHI3S
Exercise Recurrence relations

Sortthefunctions based on ssymptatic order of growth

logn!0%® logs™

nlog(n) ( S )
2,

logn Toglognt

logn!/=n N

logn w

log2*/n »

e )

the maser thearem
+ Given a recurrence relation:

i) = aT () + 1)

@ number o sub-problems
b reduction factor or the input
(1) amount of work for creating and combining sub-problems
Onesa) I 1(n) 1 0w 0]

T(n) = 4 @(nss < logn) if f(n) s @' =)
o) i 1(n) s

<) and af(n/b) < ef(n) for some ¢ < 1
« In many practical cases a = b (simplifies the expressions above)
is not general it



https://www.youtube.com/watch?v=YX40hbAHx3s
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