What are we analyzing?
Analysis of Algorithms
Data Structures and Algorithms for Computational Linguistics Il
(1SCL-BA07) « S far, we frequently asked: “can we do better?”
+ Now, we turn to the questions of
= what s better?
Gagn Coltekin ~ Tow do we know an algorithm is beter than the other?
ccoltekin®sfs. uni-tuebingen.de « There are many properties that we may want to improve
Universty of Tobngen e
S Schothal SEEE
Winter Semester 2023/24 i this lectur,efcincy willbe ot focus
+ i paricular time efcieny compleiy

How to determine running time of an algorithm?

write the code, experiment

Some functions to know about

Definition

« A few issues with this approach:
~ Implementing somthing that does ot
work i not productive (or fun)

+ A possible approach:

- - al poential NiegN 1) = njoun
= Testwith varying imput inputs Quadratc fr=r
B " version eported 10 years ago,do you really Other polynomials ~ (n) = nk, for k > 3
have an mprovement? Exponential fln) = b for b 1
+ Aformal approach offers some help here Factorial fin) =t

« We will use these functions to characterize running times of algorithms

Some functions to know about
the picture - why e care about their diference

Some functions to know about
the bigger plcture

A few facts about logarithms Polynomials
+ Logarithm is the inverse of exponentiation:

x=logyn b b= + A degree-0 polynomial s constant function (f(n) —)
« We will mostly use base-2 ogarithms. For us, no-base means base-2 + Degree-1is linear (1(n] =n+)

+ Additional properties: + Degree-2is quadrati (f(n) = n? +n+ ¢)

logxy = logx +Iogy + We generally drop the lower order terms (soon we'l see why)

log 1 = log x — logy « Sometimes it

ill be useful to remember that
logx® =

nn+1)
142 4n=2intl)

42434 T

logyx =

« Logari than

Combinations and permutations Proof by induction

emt=nx(m-1x..x2x1
« Permutations « Induction is an important proof technique
e _ « Itis often used for both proving the correctness and running times of
Pl = (=) x k=) = algorithms
i i « Tt works if
+ Combinations n choose K _ Show tha base case holds

ps of an algorithm (I

X w Pkl Assume the resul s corec o , show that it lso olds for -+ 1
= (3) = et =i
Proof by induction Formal analysis of running time of algorithms
Bampleshow that 1423+ = i+ 112
+ Base case, for n=1
nx22
« Assuming -0

+ The running time is characterized as a function of input size
+ We are aiming for an analysis method
~ independent of hardware / software environment
does not require implementation before analysis
= considers all possible inputs

we need to show that

nnt1)
7

Hntl

DDA (et Dint2)
7 T

How much hardware independence?

quite, bt ot completely we assme a RAM model of computing

+ Characterized by random acc
sequential memory, like a tape)

- Wea P P (addition,
comparison) in constant time.

« The data and the instructions are stored in the RAM

s memory (RAM) (e.g. in comparison to.a

« The processor fetches
« This is largely true for any computing system we use in practice

RAM model: an example

« Processing unit performs basic.
operations in constant time

+ Any memory cell with an address.
can be accessed in equal (constant)
time

+ The instructions as well as the data
s kept in the memory

processing unit

+ There may be other, specialized
registers

+ Modern proce
employ a ‘cache’

ing units also

Formal analysis of running time

« Simply count the number of primitive aperations
- Primitive operations include:

- Assignment

- Anthmetic operations.

- Comparing primitve data ypes e, numbers)

- Accessing 3 single memory location

~ Function cals return from functions

« Not primitive operations:

~ loops, recursion.

- comparing sequences

Focus on the worst case

« Algorithms are generally faster on certain input than others
« In most cases, we are interested in the worst case analysis
- Guaraneing worst cas s mporant

+ Average case analysis s also useful, but
- retes dfing distbuton v s put
= often more challen

Counting primitive operations
example: ncarest points the mave lgorthn

Tl =3+ (14243 +

=t

noT) x4+l

—ax +4

Big-O notation

« Big-O notation is used for indicating an upper bound on running time of an
algorithm as a function of runing time
of an algorithm s O((n)),
" proportional o f{n)asthe input ize . grows
* Moreformaly, ivn unctons () an g, weay that) i (o)
ere is a constant ¢ > 0 and integer no > 1 such that

fn) < x gln) forn > no

« Sometimes the notation f(n) = O(g(n] is also used, but beware: this equal
sign is not symmetric

Big-O example Big-O, another example
Ty = —2n +518 0 Tin) =n 4301 Ot
10000 o
3000 ©
6000 _
z £ 2
= 4000 =
2,000 ©
0 0
02 0 @ 8 10 0o 1 2 3 4 5
T faes
f af 2
Big:O, yetanother example Back to the function classes
ot O() - prof by picture
Far Definition
Constant T =c
Logarithmic) = logy n
Linear n
& log f(n) = nlogn
= Quadratic n?
Cubic n®
Other polynomials () = n* for k >3
Exponential b forb> 1
Factorial n
+ None of these functions can be expressed as a constant factor of another
Rules of thumb Rules of thumb,
Drop thelowerorderterms Z
« Inthe big-O notation, we drop the constants and lower order terms Olf(m))
- Any polmomiat dgre 41) "
0n - an 4 1 10015 O[] n
~ Drep ny v rdr . logn
10w 1012%) =
o U::“hs:\mpl&ﬂsxpl\'»lon lon® 420 20
-+ 10015 O(5m), but we prefer O] log 2" n
2 W n 4 1001 O(n?), bk we prfer O(1%) ;e g
« Teanstity (1) O{g(n), 3] < O{h(w),then () = Ofh) 00kt 2%
« Additivity: if both (1) and g(n] are O(h(n) (n) + g(n) is O(h(n)) e
ogn!_nlogn

Big-O: back to nearest points

et shortess distance(posace)
= = ieaGoiaie) #2 (constant;
Tor 1 4n range(a) 1
3 in xange(t) 1
= aistance(pointals), potncs(sl) 7 2
i min > a. M
min - 4 "
T =3+(1424+3+. . 4n—T) x4+
FRELELL PRSI S
=om?)

Big-O examples

inear scarch

« What s the worst-case running time?
2 2asigmens

nincrement

B e
T(n) =3n+3=0(n)

« What s the average-case running time?
2 2assignments

Lem1 3. 2(n/2] comparisans, n/2 increment, 1
return None retum

+ dof Tinear_searcheeq, vaD):
vhile 4 ¢ n:
it seqli] == val
turn i

Tin) =3/20+3=0(n)
+ What about best case?
Note: do not confuse the big-O with the worst case analysis.

o)

Recursive example Why asymptotic analysis is important?
Recurstve binary search “mainum provem sz

. c 5 that + Assume we can solve a problerm of size m i a given time on current harduware
et L0) Tin) =+ Tin/2) 2 beter commputer, which runs 1024 tmes faies
T + Thisis a recursive formula, it means et patercomputer whieh .
: Ve This s ecursefor + New problem size we can solve in the same time
s Tn/A) = ¢+ Tin/3) Complex new problem size
; ' + S0,Tin) = 2c-+ T(n/4) =3¢+ T(n/8) 102im
0 T m“‘ = L + More generally, Tin) = ic + T(n/2') Quadratic (n?) 32m
. o B Exponential 2") _ m+10
w e s the good news: i . y

T = lagn £ T01) < Ofiog) algorithms

- T = witha exponentisl lgrithmfs ardare docs ot help
r, see Appendix) !

Worst case and asymptotic analysis

thels
pro s u(-am(and we gt (vey)strong it we oo tht e g,
won't perform worse than the bou

problems,

~ In practice you may prefer an algorithm that does better on average (we'll e
examples from sorting)
+ Our analyses are based on asymptotic behavior
o for a large enough input, asymptotic analysis i correct
con constant or lower order factors are not ahways unimportant
- Aconstant factor o 1001 should probably not be ignored

Big-O relatives

« Big-O (upper bound): f(n)is Olg(n)
if () is asymptotically ess fa or qual to g(r)

() < eglm) forn > ne
+ Big:Omega (lower bound): f(n)is Q(g(n))
if f(n) i asymptotically greatr han or egual t g(n)
n) > cgln) for n > no
« Big:Theta (upper/lower bound): f(n) is B(g(n))
3f f(n) i asymptotically eual o g(n)
f(n) is Olg(n)) and f(n) is Q(g[n))

Big-O, Big-0, Big-: an example

T —nd 4 3n s

O fore=2andn

Tin) < egin) forn > no

Q fore=1andng =0

Tin) > egin) forn > no

© forc=2,no=3,¢’ = Tandn§

and

Tin) < egin) forn > no

Tin) > egln) forn > nj

Summary

andnlog.

« Polynomial algorithms may be acceptable in many cases

« Exponential algorithms are bad

. this Igorithy

« Sublinear (e.5. logarithmic), L

« Reading for this lecture: Goodrich, Tamassia, and Goldwasser (2013,

Next:
+ Common patterns in algorightms
« Sorting algorithms
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12) - up to 12.7

Acknowledgments, credits, references

« Some of the slides are based on the previous year's course by Corina Dima.

B oo il . Rt Tamasi and Mica . Gldvsr (1)
and Algoritns in Pythan.John

Wiley & Sons, Incorporated. sm:

A(nother) view of computational complexity
1NN complte and al that

« A major division of complexity classes according to Big-O notation s between
P polynomial time algorithms
NP non-deterministic polynomial time algorithms.
+ A big question in computing is whether P = NP
« All problems in NP can be reduced in polynomial fime to a problem in a
subelass of NP (NP-complete)
- Solving an NP complete prablem in P would mean proving

et
P-NP
Video from https: //www. youtube. con/vatch7v=YX40DAHI3S
Exercise Recurrence relations

Sortthefunctions based on ssymptatic order of growth

logn!0%® logs™

nlog(n) (S)
2,

logn Toglognt

logn!/=n N

logn w

log2*/n »

e)

the maser thearem
+ Given a recurrence relation:

i) = aT () + 1)

@ number o sub-problems
b reduction factor or the input
(1) amount of work for creating and combining sub-problems
Onesa) I 1(n) 1 0w 0]

T(n) = 4 @(nss < logn) if f(n) s @' =)
o) i 1(n) s

<) and af(n/b) < ef(n) for some ¢ < 1
« In many practical cases a = b (simplifies the expressions above)
is not general it

https://www.youtube.com/watch?v=YX40hbAHx3s

	Analysis of Algorithms
	Introduction
	What are we analyzing?
	How to determine running time of an algorithm?

	Preliminaries
	Some functions to know about
	Some functions to know about
	Some functions to know about
	A few facts about logarithms
	Polynomials
	Combinations and permutations
	Proof by induction
	Proof by induction

	Asymptotic analysis
	Formal analysis of running time of algorithms
	How much hardware independence?
	RAM model: an example
	Formal analysis of running time
	Focus on the worst case
	Counting primitive operations
	Big-O notation
	Big-O example
	Big-O, another example
	Big-O, yet another example
	Back to the function classes
	Rules of thumb
	Rules of thumb
	Big-O: back to nearest points
	Big-O examples
	Recursive example
	Why asymptotic analysis is important?
	Worst case and asymptotic analysis
	Big-O relatives
	Big-O, Big-, Big-: an example
	Summary

	Appendix
	Acknowledgments, credits, references
	A(nother) view of computational complexity
	Exercise
	Recurrence relations

