Analysis of Algorithms

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-17)

Çağ̛n Çoltekin

ccoltekinasfa.uni-tuebingen.de
University of Tubingon
Seminar fur Sprachwissenschaft
Winter Semester 2023/24

What are we analyzing?

- So far, we frequently asked: 'can we do better?'
. Now, we turn to the questions of
- what is better?
- how do we know an algorithm is better than the other?
- There are many properties that we may want to improve
- correctness
- robustress
- robustress
- In this lecture, efficiency will be our focus
- in particular time efficiency/complexity
minis smanamexia4 1/11

How to determine running time of an algorithm?
write the code, experiment

A possible approach:

- Implement the algorithm
- Test with varying input
- A few issues with this approach:
- Implementing something that does not
work is not productive (or fun)
-It is often not possible to cover all potential
inputs
- If your version takes 10 seconds less than a version reported 10 years ago, do you really have an improvement?

A formal approach offers some help here
Some functions to know about

Family	Definition
Constant	$f(n)=c$
Logarithmic	$f(n)=\log _{b} n$
Linear	$f(n)=n$
$N \log N$	$f(n)=n \log n$
Quadratic	$f(n)=n^{2}$
Cubic	$f(n)=n^{3}$
Other polynomials	$f(n)=n^{k}$, for $k>3$
Exponential	$f(n)=b^{n}$, for $b>1$
Factorial	$f(n)=n!$

- We will use these functions to characterize running times of algorithms

Some functions to know about
the bigger picturc

Polynomials

- A degree-0 polynomial is a constant function $(f(n)=c)$

Degree-1 is linear ($\mathrm{f}(\mathrm{n})=\mathrm{n}+\mathrm{c}$)

- Degree-2 is quadratic ($\left.f(n)=n^{2}+n+c\right)$
- We generally drop the lower order terms (soon we'll see why)
- Sometimes it will be useful to remember that

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

- Logarithmic functions grow (much) slower than linear functions
> in $58 /$ Ltrowar armanem

How much hardware independence?
quite, but not completely: we assume a RAM model of compl
quite, but not completely we assume a RAM model of computing

- Characterized by random access memory (RAM) (e.g., in comparison to a sequential memory, like a tape)
We assume the system can perform some primitive operations (addition, comparison) in constant time
The data and the instructions are stored in the RAM
- The processor fetches them as needed, and executes following the instructions
- This is largely true for any computing system we use in practice

RAM model: an example

- Processing unit performs basic operations in constant time
- Any memory cell with an address can be accessed in equal (constant) time
- The instructions as well as the data is kept in the memory
- There may be other, specialized registers
- Modern processing units also employ a 'cache'

Formal analysis of running time

- Simply count the number of primitive operations
- Primitive operations include:
- Assignment
- Arithmetic operations
- Comparing primitive data types (e.g., numbers)
- Accessing a single memory location

Not primitive operations:

- loops, recursion
- comparing sequences

Counting primitive operations
example nearest points, the naive algorithm

$$
\begin{aligned}
T(n) & =3+(1+2+3+\ldots+n-1) \times 4+1 \\
& =4 \times \frac{(n-1) n}{2}+4
\end{aligned}
$$

Big-O, yet another example
but n^{2} s not $\mathrm{O}(\mathrm{n})$ - proof by picture

Rules of thumb

Drop the lower order terms

- In the big-O notation, we drop the constants and lower order terms
- Any polynomial degree d is $\mathrm{O} / \mathrm{n}^{d}$
$10 \mathrm{n}^{3}+4 \mathrm{n}^{2}+\mathrm{n}+100$ is $\mathrm{O}\left(\mathrm{n}^{3}\right.$
Drop any lower ord
$2^{n}+10 n^{3}$ is $O\left(2^{n}\right)$
Use the simplest expression.
$-5 n+100$ is $\mathrm{O}(5 n)$, but we prefer $\mathrm{O}(\mathrm{n})$
$-4 n^{2}+n+100$ is $O\left(n^{3}\right)$, but we prefer $O\left(n^{2}\right)$
- Transitivity: if $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$, and $\mathrm{g}(\mathrm{n})=\mathrm{O}(\mathrm{h}(\mathrm{n}))$, then $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{h}(\mathrm{n}))$
- Additivity: if both $f(n)$ and $g(n)$ are $O(h(n)) f(n)+g(n)$ is $O(h(n))$
- Algorithms are generally faster on certain input than others
- In most cases, we are interested in the worst case analysis
- Guaranteeing worst case is important
- It is also relatively easier: we need to identify the worst-case input
- Average case analysis is also useful, but
- requires defining a distribution over possible inputs
- often more challenging

Big-O notation

- Big-O notation is used for indicating an upper bound on running time of an algorithm as a function of running time
- If running time of an algorithm is $\mathrm{O}(\mathrm{f}(\mathrm{n}))$, its running time grows proportional to $f(n)$ as the input size n grows
- More formally, given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there is a constant $\mathrm{c}>0$ and integer $\mathrm{n}_{0} \geqslant 1$ such that

$$
f(n) \leqslant c \times g(n) \text { for } n \geqslant n_{0}
$$

- Sometimes the notation $f(n)=O(g(n))$ is also used, but beware: this equal sign is not symmetric
ccukin SE/Lromury oftanan

Big-O, another example
$\mathrm{T}(\mathrm{n})=\mathrm{n}^{2}+3 \mathrm{n} i \mathrm{~s} \mathrm{O}\left(\mathrm{n}^{2}\right)$

Back to the function classes

Family	Definition
Constant	$f(n)=c$
Logarithmic	$f(n)=\log _{b} n$
Linear	$f(n)=n$
N log N	$f(n)=n \log n$
Quadratic	$f(n)=n^{2}$
Cubic	$f(n)=n^{3}$
Other polynomials	$f(n)=n^{k}$, for $k>3$
Exponential	$f(n)=b^{n}$, for $b>1$
Factorial	$f(n)=n!$

None of these functions can be expressed as a constant factor of another

Watrisnumin 2my $\quad 21 / 23$

Rules of thumb
examples

$f(n)$	$O(f(n)]$
$7 n-2$	n
$3 n^{3}-2 n^{2}+5$	n^{3}
$3 \log n+5$	$\log n$
$\log n+2^{n}$	2^{n}
$10 n^{5}+2^{n}$	2^{n}
$\log 2^{n}$	n
$2^{n}+4^{n}$	4^{n}
100×2^{n}	2^{n}
$n 2^{n}$	$n 2^{n}$
$\log n!$	$n \log n$

Big-O: back to nearest points

def shortest_distance(points):

```
        n - len(points)
    min}=
    for i in range(n):
        for j in range(i):
        l
        l
    return min
    * 2 (constant?)
    1) (constant)
    ## (constant)
    %i trimes
    2? (constant)
    ## (constant)
```

$\mathrm{T}(\mathrm{n})=3+(1+2+3+\ldots+n-1) \times 4+1$
$=4 \times \frac{(n-1) n}{2}+4=2 n^{2}-2 n+4$
$=O\left(n^{2}\right)$

Big-O examples

lincar search

- What is the worst-case running time? 2. 2 assignments

3. $2 n$ comparisons, n increment
4. 1 return statemnt
$\mathrm{T}(\mathrm{n})=3 \mathrm{n}+3=\mathrm{O}(\mathrm{n})$

- What is the average-case running time?

2. 2 assignments
$2(\mathrm{n} / 2)$ comparisons, $\mathrm{n} / 2$ increment, 1 return
$\mathrm{T}(\mathrm{n})=3 / 2 \mathrm{n}+3=\mathrm{O}(\mathrm{n})$

- What about best case? $O(1)$

Note: do not confuse the big-O with the worst case analysis.

Recursive example

Recursive binary search

Counting is not easy, but realize tha $T(n)=c+T(n / 2)$

- This is a recursive formula, it means
$\mathrm{T}(\mathrm{n} / 2)=\mathrm{c}+\mathrm{T}(\mathrm{n} / 4)$,
$T(n / 4)=c+T(n / 8)$,
- $\mathrm{So}, \mathrm{T}(\mathrm{n})=2 \mathrm{c}+\mathrm{T}(\mathrm{n} / 4 \mathrm{~h})=3 \mathrm{c}+\mathrm{T}(\mathrm{n} / \mathrm{s})$
- More generally, $T(n)=i c+T\left(n / 2^{6}\right)$
- Recursion terminates when $n / 2^{i}=1$, or $n=2^{6}$
the good news: $i=\log n$
- $T(n)=c \log n+T(1)=O(\log n)$

You do not always need to prove: for most recurrence relations, there is a way to obtain quick solutions (we are not going to cover it further, see Appendix)

Worst case and asymptotic analysis
pros and cons

- We typically compare algorithms based on their worst-case performance
pro it is easier, and we get a (very) strong guarantee: we know that the algorithm won't perform worse than the bound
con a (very) strong guarantee: in some (many?) problems, worst case examples are rare
In practice you may prefer an algorithm that does better on average (we'll see examples from sorting)
Our analyses are based on asymptotic behavior
pro for a large enough' input, asymptotic analysis is correct
con constant or lower order factors are not always unimportan
- A constant factor of 100^{100} should probably not be ignored

Why asymptotic analysis is important?
'maximum problem size'

- Assume we can solve a problem of size m in a given time on current hardware
- We get a better computer, which runs 1024 times faster
- New problem size we can solve in the same time

Complexity	new problem size
Linear (n)	1024 m
Quadratic $\left(\mathrm{n}^{2}\right)$	32 m
Exponential $\left(2^{n}\right)$	$\mathrm{m}+10$

This also demonstrates the gap between polynomial and exponential algonthms:

- with a exponential algorithm fast hardware does not help
- problem size for exponential algorithms does not scale with faster computers

Big-O, Big- Ω, Big- - : an example
$\mathrm{T}(\mathrm{n})-\mathrm{n}^{2}+3 \mathrm{n}$ is $\theta\left(\mathrm{n}^{2}\right)$

O for $\mathrm{c}=2$ and $\mathrm{n}_{0}=3$
$T(n) \leqslant \operatorname{cg}(n)$ for $n>n_{0}$
Ω for $c=1$ and $n_{0}=0$
$T(n) \geqslant c g(n)$ for $n>n_{0}$.
Θ for $c=2, n_{0}=3, c^{\prime}=1$ and $n_{1}^{\prime}=0$
$T(n) \leqslant \operatorname{cg}(n)$ for $n>n_{0}$ and
$T(n) \geqslant c^{\prime} g(n)$ for $n>n_{0}^{\prime}$

Big-O relatives

- Big-O (upper bound): $f(n)$ is $\mathrm{O}(g(n))$
if $f(n)$ is asymptotically less than or equal to $g(n)$

$$
f(n) \leqslant c g(n) \text { for } n>n_{0}
$$

- Big-Omega (lower bound): $f(n)$ is $\Omega(g(n))$

If $f(n)$ is asymptotically greater than or equal to $g(n)$
$\mathrm{f}(\mathrm{n}) \geqslant \mathrm{cg}(\mathrm{n})$ for $\mathrm{n}>\mathrm{n}_{0}$
Big-Theta (upper/lower bound): $f(n)$ is $\Theta(g(n)$
if $f(n)$ is asymptotically equal to $g(n)$
$f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$

Summary

- Algorithmic analysis mainly focuses on worst-case asymptotic running times
- Sublinear (e.g., logarithmic), Linear and $n \log n$ algorithms are good
- Polynomial algorithms may be acceptable in many cases
- Exponential algorithms are bad

We will return to concepts from this lecture while studying various algorithms
Reading for this lecture: Goodrich, Tamassia, and Goldwasser (2013, chapter 3)
Next:

- Common patterns in algorightms
- Sorting algorithms
- Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12) - up to 12.7
 Weursmean amy in ith

Acknowledgments, credits, references

- Some of the slides are based on the previous year's course by Corina Dima

0 Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013). Data Structures and Algorithms in Python. John Wiley \&s Sons, Incorporated. IsEN.
9781118476734.

A(nother) view of computational complexity
P, NP, NP-complete and all that

- A major division of complexity classes according to Big-O notation is between P polynomial time algorithms
NP non-deterministic polynomial time algorithms
- A big question in computing is whether $\mathrm{P}=\mathrm{NP}$
- All problems in NP can be reduced in polynomial time to a problem in a
subclass of NP (NP-complete)
- Solving an NP complete problem in P would mean proving

$$
\mathrm{P}=\mathrm{NP}
$$

Video from https: //uwu youtube. con/watch?v=YX40hbaHx 38

Exercise

Sort the functions based on asymptostic order of growth

$\log n^{1000}$	$\log 5^{n}$
$n \log (n)$	$\binom{n}{n / 2}$
5^{n}	$\log \log n!$
$\log n$	\sqrt{n}
$\log n^{1 / \log n}$	n^{2}
$\log n$	2^{n}
$\log 2^{n} / n$	$\binom{n}{2}$

$\log \log n!$ \sqrt{n}
n^{2}
2^{n}
$\binom{n}{2}$

Recurrence relations

the master theorem

- Given a recurrence relation:

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

a number of sub-problems
b reduction factor or the input
$f(n)$ amount of work for creating and combining sub-problems
 if $f(n)$ is $\Omega\left(n^{\operatorname{los}+a+c}\right)$ and $a f(n / b) \leqslant c f(n)$ for some $c<1$

- In many practical cases $\mathrm{a}=\mathrm{b}$ (simplifies the expressions above)
- But the theorem is not general for all recurrences: it requires equal splits

\square

